Contains Nonbinding Recommendations

Draft - Not for Implementation

Technical Performance Assessment of Digital Pathology Whole Slide Imaging Devices

Draft Guidance for Industry and Food and Drug Administration Staff

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

You should submit comments and suggestions regarding this draft document within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Submit electronic comments to http://www.regulations.gov. Identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions about this document, contact the Division of Molecular Genetics and Pathology at 301-796-6179 and Nicholas Anderson at 301-796-4310 or nicholas.anderson@fda.hhs.gov or Aldo Badano at 301-796-2534 or aldo.badano@fda.hhs.gov.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health

Office of In Vitro Diagnostics and Radiological Health
Division of Molecular Genetics and Pathology
Molecular Pathology and Cytology Branch
Preface

Additional Copies

Additional copies are available from the Internet. You may also send an e-mail request to CDRH-Guidance@fda.hhs.gov to receive a copy of the guidance. Please use the document number 1400053 to identify the guidance you are requesting.
Table of Contents

1. Introduction ... 1
2. Background ... 2
2. Scope ... 2
3. Policy ... 3

4. Description and Test Methods for Each Component .. 3

5. Slide Feeder ... 5

6. Light Source .. 5

7. Imaging Optics .. 6

8. Mechanical Scanner Movement .. 7

9. Digital Imaging Sensor ... 8

10. Image Processing Software .. 9

11. Image Composition ... 9

12. Image Files Formats .. 10

13. Image Review Manipulation Software .. 11
Contains Nonbinding Recommendations

Draft - Not for Implementation

IV(A)(10). Computer Environment ... 11
IV(A)(10)(a). Description ... 11
IV(A)(11). Display ... 12
IV(A)(11)(a). Description ... 12
IV(A)(11)(b). Test Methods ... 12
IV(A)(11)(c). Resources ... 13

IV(B). System-level Assessment .. 13
IV(B)(1). Color Reproducibility .. 14
IV(B)(1)(a). Description ... 14
IV(B)(1)(b). Test Methods ... 14
IV(B)(1)(c). Resources ... 16
IV(B)(2). Spatial Resolution .. 16
IV(B)(2)(a). Description ... 16
IV(B)(2)(b). Test Methods ... 16
IV(B)(3). Focusing Test ... 16
IV(B)(4). Whole Slide Tissue Coverage ... 17
IV(B)(4)(a). Description ... 17
IV(B)(4)(b). Test Method ... 17
IV(B)(5). Stitching Error ... 18
IV(B)(5)(a). Description ... 18
IV(B)(5)(b). Test Methods ... 18

IV(C). User Interface ... 19
IV(C)(1). Description ... 19
IV(C)(2). Test Methods ... 19
IV(C)(3). Resources ... 22

IV(D). Labeling ... 22
IV(D)(1). Test Methods ... 23
IV(D)(2). Resources ... 23

IV(E). Quality Control .. 23
Technical Performance Assessment of Digital Pathology Whole Slide Imaging Devices

Draft Guidance for Industry and Food and Drug Administration Staff

This draft guidance, when finalized, will represent the Food and Drug Administration's (FDA's) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the appropriate number listed on the title page of this guidance.

I. Introduction

FDA is issuing this guidance to provide industry and agency staff with recommendations regarding the technical performance assessment data that should be provided for regulatory evaluation of a digital whole slide imaging (WSI) system. This document does not cover the clinical submission data that may be necessary to support approval or clearance. This document provides our suggestions on how to best characterize the technical aspects that are relevant to WSI performance for their intended use and determine any possible limitations that might affect their safety and effectiveness.

Recent technological advances in digital microscopy, in particular the development of whole slide scanning systems, have accelerated the adoption of digital imaging in pathology, similar to the digital transformation that radiology departments have experienced over the last decade. The FDA regulates WSI systems manufacturers to ensure that the images produced for clinical intended uses are safe and effective for such
presents. Essential to the regulation of these systems is the understanding of the technical performance of the components in the imaging chain, from image acquisition to image display and their effect on pathologist’s diagnostic performance and workflow.

Prior to performing non-technical analytical studies (i.e., those using clinical samples) and clinical studies to evaluate a digital imaging system’s performance, the manufacturer should first determine the technical characteristics that are relevant to such performance for its intended use and determine any possible limitations that might affect its safety and effectiveness. This draft guidance, when finalized, will provide recommendations that should be included in the assessment of technical characteristics of a WSI device.

FDA’s guidance documents, including this guidance, do not establish legally enforceable responsibilities. Instead, guidelines describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidance means that something is suggested or recommended, but not required.

II. Background

For over a hundred years, the reference method for the diagnosis of cancer and many other critical clinical conditions has been histopathological examination of tissues using conventional light microscopy. This process is known as surgical pathology in the United States.

In surgical pathology, patient tissue from surgery, biopsy or autopsy goes through a process that includes dissection, fixation, embedding, and cutting of tissue into very thin slices which are then stained, for example by the hematoxylin and eosin (H&E) protocol, and permanently mounted onto glass slides. The slides are examined by a pathologist under a light microscope by dynamically adjusting the focus and using different magnifications. By integrating their interpretations obtained by microscopic examination of the tissue from all slides pertaining to a case, pathologists arrive at a diagnosis of the case.

WSI refers to the digitization of the stained entire tissue specimen on a glass slide. The glass slide is still prepared and stained just as for conventional light microscopy.

Depending on the system used, various magnifications, scanning methodologies, hardware, and software are employed to convert the optical image of the slide into a digital whole slide image. With WSI, the pathologist views the image on a computer monitor rather than through the microscope oculars.

III. Scope

This document provides guidance regarding only the technical performance assessment of WSI systems for regulatory evaluation. WSI systems are defined here as those consisting of (a) an image acquisition subsystem that converts the content of a glass slide
into a digital image file, and (b) a workstation environment for viewing the digital images. This guidance is applicable for surgical pathology tasks performed in the anatomic pathology laboratory. It is intended to provide recommendations to industry and FDA staff regarding only the technical performance assessment data needed for the regulatory evaluation of a WSI device. This document is not meant to provide guidance for the non-technical analytical studies (utilizing clinical samples) or pivotal clinical studies necessary to support safety and effectiveness, nor does this guidance alone suffice to demonstrate safety and effectiveness of WSI systems. Interpretation of WSI images on mobile platforms is beyond the scope of this guidance.

IV. Policy

The following subsections of this section describe the technical performance assessment data FDA believes are necessary to allow for the regulatory evaluation of a WSI device.

IV(A). Description and Test Methods for Each Component

This subsection details the descriptions and the test methods at the component level that should be included in the technical performance assessment of a WSI device. For purposes of this guidance only, a component is a piece of hardware, software, or a combination of hardware and software that processes the image signals flowing through the imaging chain. The concept of a component is based on the transformation of the image signals. For example, the digital imaging sensor is a hardware device that converts optical signals into digital signals. The image composition component is a software program that stitches sub-images together to form a whole slide image. A component and a physical device need not be in close physical proximity. For example, the light source component and the image optics component are usually tightly coupled within the same device, while the display calibration data is often distributed in both the color profile in the computer environment component and the on-screen display settings in the display component.

The components in a WSI device can be grouped in two subsystems: image acquisition and image display. The image acquisition subsystem digitizes the tissue slide as a digital image file. The image display subsystem converts the digital image file into optical signals for the human reader. In the paradigm of telemedicine, the digital image file can be electronically sent to a remote site for reading, so the image acquisition subsystem and the image display subsystem do not need to be physically coupled. Methods for independently testing the image acquisition and display subsystems are described in Section IV(B).

Sponsors should provide a block diagram of the components found in the WSI system in the premarket submission. A chart indicating the relationship among the components and the test methods utilized for the specific system characterization should also be provided. Diagram 1 on the following page is offered as an example block diagram of typical
components found in current WSI systems. The components of a particular WSI system might not include all of those listed in the diagram or may include additional components. Sponsors are encouraged to provide additional diagrams, illustrations, and photographs of their devices as part of their submissions.

Diagram 1: Example block diagram of typical components found in current WSI systems
IV(A)(1). Slide Feeder

IV(A)(1)(a). Description

The slide feeder is the mechanism(s) used to introduce the slide(s) to the scanner. For the slide feeder, sponsors should provide the following information, if applicable:

- Configuration of the slide feed mechanism (a physical description of the equipment)
 - Slide configuration (physical description of the slide (i.e., custom or commercial off-the-shelf))
 - Number of slides in queue (carrier)
 - Class of automation (e.g., robotics, pneumatics, etc.)

- User interaction
 - Hardware (e.g., loading of slides into carrier)
 - Software (e.g., does the system recognize the number of slides or is this specified by the user)
 - Feedback (e.g., alarms, notifications, etc.)
 - Failure Mode and Effects Analysis (FMEA) (including severity, likelihood, mitigations, etc.)

IV(A)(2). Light Source

IV(A)(2)(a). Description

The light source, including the light guide, generates and delivers light to the slide being imaged. The two major components are the lamp and condenser. For the light source, sponsors should provide the following information and specifications, if applicable:

- Lamp
 - Bulb type (e.g., halogen, xenon arc, LED)
 - Manufacturer and model
 - Wattage
 - Spectral power distribution or color temperature
 - Expected lifetime
 - Output adjustment control (electrical/electronic/mechanical)
 - Optical filter(s)
 - Type (e.g., heat blocking, polarization, neutral density, diffusing)
 - Manufacturer and model
 - Expected intensity variation (coefficient of variation (CV) as a percentage)
 - Over the duration of scanning a single slide
 - Over the course of a single workday
 - Expected spectral variation
 - Over the duration of scanning a single slide
 - Over the course of a single workday
 - Over the lifetime of the device
Contains Nonbinding Recommendations

Draft - Not for Implementation

• Capability of tracking intensity and spectral degradation with lifetime

• Condenser
 o Illumination format (e.g., Kohler, critical)
 o Manufacturer and model
 o Numerical aperture
 o Focal length
 o Working distance

IV(A)(2)(b). Test Method

The following steps should be used to measure the spectral distribution of light incident on the slide. Position the input of a calibrated spectrometer or monochromator at the plane where the slide would be placed, centered on the illumination spot from the condenser. If desired, the light can be coupled into the spectrometer via light guide (e.g., fiber optic cable) or an integrating sphere. The measurement aperture should be at least as large as the anticipated field of view on the slide at the lowest magnification of the imaging optics. The wavelength accuracy and relative spectral efficiency of the spectrometer or monochromator in the wavelength range of 400-700 nm should be calibrated prior to measurements and reported. Plots of the measured spectrum in radiometric units (i.e., irradiance in W/cm²/nm or similar) should be provided.

IV(A)(3). Imaging Optics

IV(A)(3)(a). Description

The imaging optics comprises the microscope objective and auxiliary lens(es) (e.g., tube lens), which optically transmit an image of the tissue from the slide to the digital image sensor. Sponsors should provide the following information and specifications, if applicable:

• Ray-trace from slide (object plane) to digital image sensor (image plane)

• Microscope objective
 o Manufacturer
 o Type (e.g., Plan, Plan APO)
 o Magnification
 o Numerical aperture (NA)
 o Focal length
 o Working distance

• Auxiliary lens(es)
 o Manufacturer
 o Lens type
 o Focal length

• Magnification of imaging optics, per ISO 8039:1997 Optics and optical instruments — Microscopes — Magnification
IV(A)(3)(b). Test Methods

Sponsors should conduct the following tests in conformance with the International Standards, if applicable:
- Relative irradiance of imaging optics at image plane per ISO 13653:1996 *Optics and optical instruments – General optical test methods - Measurement of relative irradiance in the image field*
- Distortion per ISO 9039:2008 *Optics and photonics — Quality evaluation of optical systems — Determination of distortion*
- Chromatic aberrations per ISO 15795:2002 *Optics and optical instruments — Quality evaluation of optical systems — Assessing the image quality degradation due to chromatic aberrations*

IV(A)(4). Mechanical Scanner Movement

IV(A)(4)(a). Description

The mechanical scanner addresses the physical characteristics of the stage upon which the glass slide is affixed. The key components include stage configuration, movement, and control. This information is relevant whether it is only the stage that is moving and the optics are stationary, or if there is movement on all axes. For the mechanical scanner, sponsors should provide the following information and specifications, if applicable:
- Configuration of the stage (a physical description of the stage)
 - Stage size
 - Stage manufacturer and model number
 - Stage material (e.g., anodized aluminum)
 - Single multi-axis or multiple stacked linear stages (manufacturer and model number)
 - Type of guides or ways (e.g., bearings)
 - Sample retention mechanism (slide holder)
- Method of movement of the stage (e.g., stepper motor, servomotor, piezomotor, etc., coupled with belt, ball-screw, lead-screw, etc.)
 - Movement resolution for XY-axes
 - Movement in Z-axis
 - Speed range
 - Travel distance
 - Maximum scanning area
 - Localization and reading of bar code labels
- Control of movement of the stage
 - Open or closed loop operation
 - Positional accuracy (calibration) and repeatability
 - Lost motion compensation (e.g., backlash)
 - Physical control (e.g., joystick) for single-slide, non-batch mode
Selection of area to be scanned (in accordance to image composition software)
 • whole slide
 • automatically determined area with tissue content

- Failure Mode and Effects Analysis (FMEA) (including severity, likelihood, mitigations, etc.)

IV(A)(4)(b). Test Method
Sponsors should demonstrate the mechanical performance of the stage with respect to positional repeatability and accuracy on all relevant axes, in accordance with ISO 230-2:2006 Test code for machine tools—Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes.

IV(A)(5). Digital Imaging Sensor

IV(A)(5)(a). Description
The digital image sensor is an array of photosensitive elements (pixels) that convert the optical signals of the slide to digital signals, which consist of a set of values corresponding to the brightness and color at each point in the optical image. Please provide the following information and specifications:
 - Sensor type (e.g., CMOS, CCD) and manufacturer
 - Pixel information/specifications
 - Number and dimensions of pixels
 - Design of color filter array
 - Configuration of color filter array
 - Spectral transmittance of color filter mask
 - Responsivity specifications
 - Quantum efficiency versus wavelength
 - Linearity
 - Spatial uniformity
 - Noise specifications
 - Dark current level (electrons per second)
 - Read noise (electrons)
 - Readout rate (e.g., pixels per second, frames per second)
 - Digital output format (e.g., bits per pixel, bits per color channel)

IV(A)(5)(b). Test Methods
Sponsors should conduct the following tests in conformance with the corresponding International Standards, if applicable:
IV(A)(6). Image Processing Software

IV(A)(6)(a). Description

Image processing software refers to the software components of the camera. It includes control algorithms for image capture and processing algorithms for raw data conversion into the digital image file. Sponsors should provide the following information and specifications, if applicable:

- Exposure control
- White balance
- Color correction
- Sub-sampling
- Pixel-offset correction
- Pixel-gain or flat-field correction
- Pixel-defect correction

IV(A)(6)(b). Resources

See the guidance entitled “Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices” (http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089543.htm) for the information that should be provided.

IV(A)(7). Image Composition

IV(A)(7)(a). Description

Image composition is a step present in systems that produce whole slide images as opposed to individual fields of view. Whole slide scanning is typically performed in accordance with the positioning of a stage that moves in submicron steps. At each location of the stage movement, an image of the field of view is acquired. Images can be acquired with a degree of overlapping (redundancy) between them to avoid gaps in data collection. Images can also be acquired at different depths of focus followed by the application of focusing algorithms. At the end of this process, all acquired images are combined (stitched) together to create a composite high resolution image. There are a number of features that can affect this process, and they are listed below. Sponsors should provide a description of these features, if applicable:

- Scanning method
o Single objective or multiple miniature objectives in an array pattern
o Scanning pattern: square matrix acquisition (tiling), line scanning, etc.
o Overlap between scanned regions
o Merging algorithms that stitch the aligned images together into a
 composite image file. Such algorithms may employ functions to align
 adjacent fields of view in accordance to the scanning pattern, overlap, etc.
o Automatic background correction functions to eliminate the effect of non-
 uniformities in the microscope’s illumination and image merging
 procedure. These non-uniformities if not corrected might create visible
 borders (seams and stitch lines) between the adjacent fields of view.

- Scanning speed: time to scan the whole slide. This time is dependent on selected
 magnification, and the amount of tissue on the glass slide.
- Number of planes at the Z-axis to be digitized (stack depth)

IV(A)(7)(b). Test Methods

Testing for image composition can be performed on a system level using special
 calibration slides (such as grid patterns) that can test for line uniformity and focus
 quality. Sponsors should provide the following outputs for these tests, if applicable:

- Images of digitized calibration slides
- Analysis of focus quality metrics
- Analysis of coverage of the image acquisition for the entire tissue slide

IV(A)(8). Image Files Formats

IV(A)(8)(a). Description

The final result from image acquisition can be a whole slide image consisting of a stack
 of all acquired fields of view and magnifications during WSI. The complete digitized
 image file usually occupies between 1-20 gigabytes of storage space depending on the
 sample and the magnification of the objective lens used. Images can then be stored in a
 number of ways and formats. Sponsors should provide the following information:

- Compression method (e.g., the wavelet-based JPEG2000 compression standard or
 TIFF)
- Compression ratio: ratio of uncompressed to compressed file size
- Compression type: lossless or lossy compression
- File format: can be formats easily accessible with public domain software such as
 JPEG or TIFF, or can be proprietary formats only accessible with specific vendor
 viewers. The file format depends on the file organization and related use.
- For systems that interact with DICOM-compliant software and hardware,
 sponsors should provide a DICOM compatibility report.
- File organization:
 o Single file with multi-resolution information (pyramidal organization)
 o Stack of files at different magnifications
IV(A)(9). Image Review Manipulation Software

IV(A)(9)(a). Description

For the image review manipulation software, sponsors should provide the following information, if applicable:

- Continuous panning (moving in x-y space) and pre-fetching (buffering adjacent images to speed up panning time)
- Continuous zooming (magnification)
- Discrete Z-axis displacement
- Ability to compare multiple slides simultaneously on multiple windows
- Ability to perform annotations
- Image enhancement such as sharpening functions
- Color manipulation, including color profile, white balance, color histogram manipulation, and color filters
- Annotation tools
- Tracking of visited areas and annotations
- Digital bookmarks (revisit selected regions of interest)
- Virtual “multihead microscope” (this is when multiple pathologists simultaneously review the same areas remotely)

IV(A)(9)(b). Resources

See the guidance entitled “Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices” (http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089543.htm) for additional information on this subject.

IV(A)(10). Computer Environment

IV(A)(10)(a). Description

Computer environment refers to the workstation, including both hardware and software components, that retrieves the digital image file and drives the display for the user to review the images. Sponsors should provide the following information and specifications, if applicable:

- Computer hardware (e.g., PC or Mac)
- Operating system (e.g., Win7 32-bit, OSX 10.6, or Linux/Ubuntu 11.10 32-bit)
- Graphics card (e.g., nVidia GeForce GTX 5x0 PCI Express x16)
- Graphics card driver (e.g., nVidia GeForce driver 285.63)
- Color management settings (e.g., ICS or WCS)
- Color profile (e.g., sRGB IEC61966-2.1)
IV(A)(11). Display

IV(A)(11)(a). Description

Display refers to the optoelectronic device that converts the digital image signals in the RGB space into optical image signals for the human reader. For the display, sponsors should provide the following information and specifications, if applicable:

- Complete description of the entire display system, including the display device, display controller or graphics card, and software for the control of display functions, calibration, and image manipulation
- Display technology
- Physical size of the display available for image visualization
- Backlight type for liquid crystal displays
- Pixel array, pitch and pattern
- Sub-pixel and color driving techniques
- Video bandwidth
- On-Screen Display (OSD) controls
- Ambient light sensing
- Touch screen technology
- Color calibration tools and method for color management
- QC procedures

IV(A)(11)(b). Test Methods

On-Screen Display settings of the testing conditions should be specified, including:

- Input signal (e.g., sRGB or AdobeRGB)
- Brightness setting (e.g., 95%)
- White point setting (e.g., 6500K)
- Color channel settings (e.g., Red=100%, Green=95%, Blue=100%)

Characterization metrics related to image quality should be provided, including the following items:

- Luminance range
- Grayscale resolution, including luminance mapping or gamma response analysis
- Luminance and color coordinates of primaries
- Gray tracking (e.g., AAPM TG196)
- Additivity of primaries

Physical characterization tests should be performed, including:

- Bidirectional reflection
- Pixel fill factor
- Pixel defects (count and map)
IV(A)(11)(c). Resources

Those interested in learning more about these types of display considerations should consider reading:

- Gray Tracking in Medical Color Displays - A report of the AAPM Task Group 196

- IEC 62563-1:2009, Medical electrical equipment – Medical image display systems – Part 1: Evaluation methods

- Amendment 1 to IEC 62563-1: Medical image display systems – Part 1: Evaluation methods

IV(B). System-level Assessment

This subsection details the test methods at the system level that should be included in the technical performance assessment of a WSI device. In this guidance, system refers to a series of consecutive components in the imaging chain with clearly defined, measurable input and output. For example, a system-level test can be designed for the image acquisition subsystem, the image display subsystem, or a combination of both. The goal of system-level tests is to assess the composite performance of a series of consecutive components in the imaging chain. System-level tests should be conducted when the
component-level tests are either unfeasible or unable to capture the interplay between components.

The common framework of the system-level tests described in this section is to compare the system under test with an ideal system based on the same input, and then report the difference between their outputs quantitatively. Designing such a system-level test typically involves the following steps: (1) define the scope of the system and its input and output, (2) define the input, which in most cases is a test target or phantom, (3) measure the input to establish the ground truth that would be generated by an ideal system, (4) measure the output of the system under test, and (5) calculate the errors between the truth and the output with a quantitative metric. The framework of a typical system-level test is shown in Diagram 2. Notice that the ideal system is a hypothetical device that generates the perfect output with respect to the objective of the test such as color or focus. The purpose of the ideal system is to define the intended behavior of the system under test. The ideal system does not need to be implemented. Instead, the ideal system should be simulated by a test method that establishes the truth of the input phantom.

Diagram 2: Framework of a typical system-level test.

IV(B)(1). Color Reproducibility

IV(B)(1)(a). Description

Color reproducibility is one of the key characteristics of a WSI system and cannot be evaluated at the component level. The goal of this system-level test is to measure the color differences between the input color stimuli and the output digital image file. This test also evaluates the tone reproduction curve (i.e., gamma curve) of the WSI system.

IV(B)(1)(b). Test Methods

The following test is recommended for examining the color reproducibility of the image acquisition phase (i.e., from slide to digital image file).

- Input color patches: Use transparent test patterns consisting of colors similar to the Gretag Macbeth ColorChecker (24 colors) or X-rite Digital ColorChecker SG (140 colors). Notice that both color targets consist of a ramp of gray shades for assessing the tone reproduction curve.
The following test is recommended for examining the color reproducibility of the image display phase (i.e., from digital image file to display). The goal is to calculate the color differences between the input RGB values in the image file and the output color stimuli on the display.

- **Input color patches:** Select a set of representative colors such as the Gretag Macbeth ColorChecker (24 colors) or X-rite Digital ColorChecker SG (140 colors). A ramp of gray shades can be used for assessing the gamma characteristics.
- **Ground truth:**
 - Obtain the CIELAB values of each color patch
- **Output color stimuli:**
 - For each color patch, convert the CIELAB values into the device RGB space based on the color profile or the default color space of the workstation, which includes the image review manipulation software, computer environment, and display
 - Create an image file that consists of the color patches
 - Show the image with the workstation
 - Use a colorimeter or a spectroradiometer to measure the color coordinates of each color patch and record the color coordinates in CIEXYZ
 - Repeat the same measurement for the white point (255,255,255)
Calculate the CIELAB values

- Calculate the color differences between the measured color coordinates of the patches at the input (ground truth) and the output color stimuli with the delta-E 2000 formula

IV(B)(1)(c). Resources

A useful reference on the subject of color reproducibility is

IV(B)(2). Spatial Resolution

IV(B)(2)(a). Description

Spatial resolution is another key characteristic of a WSI system. The goal of this system-level test is to evaluate the composite optical performance of all components in the image acquisition phase (i.e., from slide to digital image file).

IV(B)(2)(b). Test Methods

The following test is recommended for assessing spatial resolution of the image acquisition phase:

- Modulation transfer function per ISO 15229:2007 Optics and photonics — Optical transfer function — Principles of measurement of modulation transfer function (MTF) of sampled imaging systems.

The test in the guidance entitled “Guidance for Industry and FDA Staff: Display Accessories for Full-Field Digital Mammography Systems—Premarket Notification (510(k)) Submissions” (http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm107549.htm) is recommended for assessing noise, as evidenced by pixel signal-to-noise ratio, of the image display phase.

IV(B)(3). Focusing Test

- The quality of focus in WSI can be affected by a number of inter-related factors, including the scanning method and approaches for constructing a focus map. Due to a trade-off between the number of focus points and the overall speed of the scanning process, focusing is typically based on a sample of focus points, determined automatically (auto-focus) or manually by the user. Since tissue can have uneven depth, auto-focus algorithms are needed to detect and adjust for different depths of focus.
• Data demonstrating that the focus quality is acceptable, even in the presence of uneven tissue, should be provided. Such data with proper justification could be derived from a phantom study, from clinical data, or both in a complementary fashion. The technology of phantom construction for testing focus is under development and this guidance will be updated as such technologies become available. Sponsors could attempt to build their own phantoms for testing depth of focus for their device. Alternatively, sponsors could provide experimental data using clinical tissue slides. Sampling of cases for such an experiment should be enriched for uneven tissue cases within a range representative of typical laboratory output. Alternative approaches for assessing the focus quality of a WSI will be considered along with proper justification. In addition, the following specifications should be provided, if applicable:
 o Focus method: auto-focus for high-throughput or user-operated focus points
 o Instructions for the selection of manual focus points (if applicable), including number of focus points and location in relation to a tissue sample
 o Metrics used to evaluate focusing and description of methods to extract them
 o Methods for constructing focus map from sample focus points

Diagram 4: Framework of the system-level focusing test.

IV(B)(4). Whole Slide Tissue Coverage

IV(B)(4)(a). Description

During the scan phase, WSI systems usually skip blank areas where tissue is absent in order to reduce scan time and file size. The purpose of the whole slide tissue coverage test is to demonstrate that all of the tissue specimen on the glass slide is included in the digital image file.

IV(B)(4)(b). Test Method

Sponsors should include a test that demonstrates the completeness of the tissue coverage.
Sponsors should describe the test method and include the following items:
Contains Nonbinding Recommendations

Draft - Not for Implementation

- Selection of the input tissue slide
- How to determine the complete coverage of the input tissue slide
- How to measure the actual coverage of the WSI output
- Calculate the ratio of the actual to complete coverage

Diagram 5: Framework of the system-level whole slide tissue coverage test

IV(B)(5). Stitching Error

IV(B)(5)(a). Description

Stitching is the technique that enables a WSI system to combine thousands of sub-images into a single whole-slide image. Although during the scanning process a certain amount of overlapping between adjacent sub-images is maintained for alignment purposes, successful stitching relies on the texture present in the overlapped area. When the stitching algorithm fails to align two sub-images seamlessly, the error may or may not be perceivable by the human reader depending on whether noticeable stitching artifacts are generated. Therefore, a system-level test should be conducted when assessing the stitching quality of the WSI system.

IV(B)(5)(b). Test Methods

Sponsors should include a test that evaluates the stitching errors and include the following items:
- Selection of the input tissue slide
- Method for sampling of the stitching boundaries where stitching errors might occur
- How to determine the perfect stitching as the ground truth
 - For example, the region of the stitching boundaries can be re-imaged in one shot such that there is no stitching artifact.
- How to evaluate quality of the actual stitching based on the perfect stitching
 - For example, compare the image of stitching boundaries with the perfect one that does not have stitching artifact. The difference between these two images can be used as a figure of merit of the stitching quality.

Diagram 6: Framework of the system-level stitching error test
IV(C). User Interface

IV(C)(1). Description

The user interface covers all components and accessories of the WSI system with which users interact while loading the slides and acquiring, manipulating, and reviewing the images. It also includes preparing the system for use (e.g., unpacking, set up, calibration), and performing maintenance. Elements of the user interface have been noted in many of the preceding sections and include two broad categories:

- Options through which the user operates the WSI system, such as:
 - Software menu options (e.g., scanning parameters)
 - Physical controls (e.g., clips on the slide feeder)
 - Connectors and connections (e.g., cables connecting system components)

- Information presented to the user through
 - Visual displays (e.g., scanned image, software menus)
 - Sounds (e.g., tone played when scanning completed)
 - Instructions (e.g., software users’ manual)
 - Labels

IV(C)(2). Test Methods

It is recommended that the analysis to identify the use-related hazards of the WSI system include the consideration of use errors involving failure to acquire, perceive, read, interpret, and act on information from the WSI system correctly or at all and the harm that could be caused by such errors. A human factors/usability validation test should be performed to demonstrate that representative users of the WSI system can perform essential tasks and those critical to safety effectively and safely under simulated use conditions.

When selecting participants for validation testing, sponsors should carefully consider user capabilities and expectations that could potentially impact the safe and effective use of the WSI system. Examples of items that should be considered, if applicable, include visual acuity and type of vision correction and the impact of expectations formed from prior experience with other systems (e.g., optical microscope).
When selecting the critical tasks to be evaluated, sponsors should incorporate all known use related errors and problems from similar devices into the validation testing. Consideration also should be given to whether task performance changes over time, and if test duration needs to account for user fatigue. Examples might include a user altering a task sequence in response to fatigue from repetitive image selection and manipulation with mouse or keyboard.

When creating the simulated use conditions for validation testing, special consideration should be given to the location of the WSI system primary workstation, its components, their arrangement and how their locations affect user performance. Examples of location considerations might include multiple monitors, a monitor with sub-optimal display settings, or glare on a monitor from indoor lighting.

A human factors/usability validation test report should generally include the information found in Table 1.

Table 1: Items a Human Factors/Usability Validation Test Report Should Include

<table>
<thead>
<tr>
<th>Section</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intended device users, uses, use environments, and training</td>
</tr>
<tr>
<td></td>
<td>· Intended user population(s) and critical differences in capabilities between multiple user populations</td>
</tr>
<tr>
<td></td>
<td>· Intended uses and operational contexts of use</td>
</tr>
<tr>
<td></td>
<td>· Use environments and key considerations</td>
</tr>
<tr>
<td></td>
<td>· Training intended for users and provided to test participants</td>
</tr>
<tr>
<td>2</td>
<td>Device user interface</td>
</tr>
<tr>
<td></td>
<td>· Graphical depiction (drawing or photograph) of device user interface</td>
</tr>
<tr>
<td></td>
<td>· Verbal description of device user interface</td>
</tr>
<tr>
<td>3</td>
<td>Summary of known use problems</td>
</tr>
<tr>
<td></td>
<td>· Known problems with previous models</td>
</tr>
<tr>
<td></td>
<td>· Known problems with similar devices</td>
</tr>
<tr>
<td></td>
<td>· Design modifications implemented in response to user difficulties</td>
</tr>
<tr>
<td>4</td>
<td>User task selection, characterization and prioritization</td>
</tr>
<tr>
<td></td>
<td>· Risk analysis methods</td>
</tr>
</tbody>
</table>
Summary of formative evaluations
- Evaluation methods
- Key results and design modifications implemented
- Key findings that informed the HFE/UE validation testing protocol

Validation testing
- Rationale for test type selected (i.e., simulated use or clinical evaluation)
- Number and type of test participants and rationale for how they represent the intended user populations
- Test goals, critical tasks and use scenarios studied
- Technique for capturing unanticipated use errors
- Definition of performance failures
- Test results: Number of device uses, success and failure occurrences
- Subjective assessment by test participants of any critical task failures and difficulties
- Description and analysis of all task failures, implications for additional risk mitigation

Conclusion
A statement to the effect that “The <device name/model> has been found to be reasonably safe and effective for the intended users, uses and use environments” should be included under the following conditions:

- The methods and results described in the preceding sections support this conclusion.
- Any residual risk that remains after the validation testing would not be further reduced by modifications of design of the user interface (including any accessories and the Instructions for Use (IFU)), is not needed, and is outweighed by the benefits that may be derived from the device’s use.
Recommended methods for performing a human factors/usability validation test are described in the resources listed in section IV(C)(3) entitled “Resources” directly below. The goal of testing is to assure that users can operate the WSI system successfully for the intended uses without negative clinical consequences to the patient and that potential use errors or failures have been eliminated or reduced.

IV(C)(3). Resources

FDA recognizes standards published by national and international organizations that apply human factors engineering/usability engineering (HFE/UE) principles to device design and testing. The recognized standards listed below provide suggestions on conducting an analysis of use-related hazards and a human factors/usability validation test to assess the safety and effectiveness of the final device design.

- IEC 62366:2007, *Medical devices – Application of usability engineering to medical devices*: Describes the process to conduct medical device usability testing and incorporate results into a risk management plan.

- In addition, FDA has published guidance with human factors related recommendations to assist manufacturers and facilitate premarket review. The guidance entitled “Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices” (http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089543.htm). This guidance document provides recommendations to industry regarding premarket submissions for software devices, including stand-alone software applications and hardware-based devices that incorporate software. It includes test methods to assure that the software conforms to the needs of the user and to check for proper operation of the software in its actual or simulated use environment.

IV(D). Labeling

The premarket application must include labeling in sufficient detail to satisfy the requirements of 21 CFR Part 801 and 21 CFR 809.10. The labeling includes supplementary information necessary to use and care for the WSI system such as instruction books or direction sheets and software user manuals.
Although instructions, labeling, and training can influence users to use devices safely and effectively, they should not be the primary strategy used to control risk. Modification of the user interface design is a more effective approach to mitigate use-related hazards.

IV(D)(1). Test Methods

It is recommended that studies on labeling and training be conducted separately from other human factors/usability validation testing. Human factors/usability validation testing should be conducted with the final version of the labeling and related materials. Timing and content of training should be consistent with that expected of actual users.

IV(D)(2). Resources

FDA has published several guidance documents on labeling to facilitate premarket review and assist manufacturers.

 - This publication covers labeling issues that device manufacturers, reconditioners, repackers, and relabelers should consider when a product requires labeling. Labeling issues may include adequate instructions for use, servicing instructions, adequate warnings against uses that may be dangerous to health, or information that may be necessary for the protection of users.

 - This guidance is intended to ensure the adequacy of, and consistency in device labeling information. It was intended for use by industry in preparing device labeling.

 - This report presents the principles of instruction, human factors, and cognitive psychology that are involved in designing effective labeling for medical devices.

IV(E). Quality Control

Sponsors should provide information on the quality control procedures, including frequency and testing methods to be performed by the laboratory technologists and/or field engineers with associated quantitative action limits. Discussions of tests for constancy should include discussions of the slide feeder and scanning mechanisms, coverage of the entire tissue slide, the bar code reader, the light source, the imaging
sensor device, and the calibrations at the component and system level. A detailed quality control manual should be provided.